Conducting Your Research: Basic Principles of Clinical Research Project Design and Procedures
STEPS OF IDEAS

Absolutely New!

Well known?

Learning experience!

Protocol? Methods?

Hard work!

Looked at, but need more data

Presentation/Publication

New idea?
EXPECTATIONS OVER TIME

Nobel Prize
Revolutionize Field
NEJM Paper
Local Abstract
Regional Conference
Share Powerpoint With Family
GOOD RESEARCH QUESTIONS

• Master the literature
• Be alert to new ideas (conferences)
• Be creative
• Choose a mentor
PICOT

- Population
- Intervention
- Comparison
- Outcome
- Time

- Example: Among patients with symptomatic pulmonary hypertension [population], can sildenafil (20, 40, or 80mg) [comparison] orally 3 times daily [intervention] for 12 weeks [time] compared to placebo [comparison] improved functional status? [outcome]
FINER

• Feasibility
 – Sample size, technical expertise, time, resources/funding, scope/focus

• Interesting
 – Personal experience, asking “why?”

• Novel
 – Literature (“need for more research”), controversy, challenge evidence

• Ethical
 – Benefits > risk

• Relevance
 – Increase knowledge, influence policy or clinical practice
STUDY DESIGNS
HIERARCHY OF EVIDENCE

- Systematic Reviews
- Randomized Controlled Trials
- Cohort Studies
- Case-Control Studies
- Case Series, Case Reports
- Editorials, Expert Opinion
WHAT IS THE STUDY DESIGN?

• Researchers observed 18 patients with sarcoidosis who underwent renal transplantation.

• Subjects were identified retrospectively in 8 renal transplant departments.

• Medical charts, demographics, and transplant outcomes were reviewed.

• These data established that renal transplants may be carried out safely in transplant candidates with sarcoidosis.
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help or
Open poll in your web browser
CASE SERIES

- Observational/descriptive
- Usually more than 10 patients, hypothesis-generating rather than evidence

WHAT IS THE STUDY DESIGN?

- Researchers looked into racial disparities in motorcycle-related mortality.
- They analyzed data from the National Trauma Data Bank (2002-2006).
- They found Black motorcyclists more likely to use a helmet compared with Whites, but also more likely to die after a motor collision.
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
CROSS-SECTIONAL

• Inexpensive, multiple risk factors analyzed simultaneously

WHAT IS THE STUDY DESIGN?

• Study of association between use of common psychotropic medications and traffic accidents.
• Researchers reviewed data from pharmacy prescriptions, police traffic accidents, and diving license data.
• They compared drivers with accident requiring medical assistance and those with license and no accident during 2000-2007.
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
CASE-CONTROL

- Consider in retrospective chart review (inexpensive, convenient)
- Useful for rare conditions
- Watch for selection bias

WHAT IS THE STUDY DESIGN?

• A study enrolled 3000 individuals at 7 sites with broad spectrum of renal disease severity.

• Subjects undergo extensive clinical evaluation and follow up visits including diet, activity, health behaviors, depression, cognitive function, health care utilization, CVD evaluations, and quality of life.

• The study is designed to look at risk factors of kidney disease and cardiovascular disease progression.
Your poll will show here

1. Install the app from pollev.com/app
2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
COHORT (PROSPECTIVE)

- Observational study, time-series
- No control group
- Subject loss can be an issue

EXPERIMENTAL STUDY DESIGNS

• Randomized Controlled Trials
 – Watch out! Strong evidence requires time, resources, and pain!

• Clinical Trials
• Cross-Over
• Quasi-Experimental
• Before-After (Pre-Post)
N OF 1
OTHER QUANTITATIVE STUDY DESIGNS

• Sequential, Multiple Assignment, Randomized Trials (SMARTs)
• Multiphase Optimization Strategy (MOST)
• Factorial (full and partial) ANOVA
• Stepped Wedge
• Interrupted Time-Series
• Regression Discontinuity Design
FOCUS GROUPS

• Eight pharmacists working with community health workers described perceptions, opinions, attitudes towards them helping with medication adherence.
• Qualitative data for analysis

OTHER QUALITATIVE STUDY DESIGNS

• Phenomenological
• Ethnographic
• Grounded Theory
• Historical
• Case
• Action Research

• Methods: interviews, observation, focus groups, document review
Table 1. Comparison of quantitative and qualitative research approaches

<table>
<thead>
<tr>
<th>General framework</th>
<th>Quantitative</th>
<th>Qualitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seek to confirm hypotheses about phenomena</td>
<td>Instruments use more rigid style of eliciting and categorizing</td>
<td>Instruments use more flexible, iterative style of eliciting and</td>
</tr>
<tr>
<td></td>
<td>responses to questions</td>
<td>categorizing responses to questions</td>
</tr>
<tr>
<td></td>
<td>Use highly structured methods such as questionnaires, surveys,</td>
<td>Use semi-structured methods such as in-depth interviews, focus</td>
</tr>
<tr>
<td></td>
<td>and structured observation</td>
<td>groups, and participant observation</td>
</tr>
<tr>
<td>Analytical objectives</td>
<td>To quantify variation</td>
<td>To describe variation</td>
</tr>
<tr>
<td></td>
<td>To predict causal relationships</td>
<td>To describe and explain relationships</td>
</tr>
<tr>
<td></td>
<td>To describe characteristics of a population</td>
<td>To describe individual experiences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To describe group norms</td>
</tr>
<tr>
<td>Question format</td>
<td>Closed-ended</td>
<td>Open-ended</td>
</tr>
<tr>
<td>Data format</td>
<td>Numerical (obtained by assigning numerical values to responses)</td>
<td>Textual (obtained from audiotapes, videotapes, and field notes)</td>
</tr>
<tr>
<td>Flexibility in study design</td>
<td>Study design is stable from beginning to end</td>
<td>Some aspects of the study are flexible (for example, the addition, exclusion, or wording of particular interview questions)</td>
</tr>
<tr>
<td></td>
<td>Participant responses do not influence or determine how and</td>
<td>Participant responses affect how and which questions researchers ask next</td>
</tr>
<tr>
<td></td>
<td>which questions researchers ask next</td>
<td>Study design is iterative, that is, data collection and research questions are adjusted according to what is learned</td>
</tr>
<tr>
<td></td>
<td>Study design is subject to statistical assumptions and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conditions</td>
<td></td>
</tr>
</tbody>
</table>
CHOOSING A STUDY DESIGN

- Discuss with mentor!
- Apply PICOT and FINER
 - State of science, Time, Resources, Limitations/bias, Patient risk
- Consult with CCTS Design and Analysis Core
IRB AND HIPAA
THE I STANDS FOR...

• Irritating?
• Impossible?

• It is necessary if Human Subjects Research

• If not sure, there’s a form for that: “Determination of Whether an Activity Represents Human Subject Research”
TRAINING REQUIRED

• New investigator training
• HSPP HIPAA training (not the same as clinical HIPAA training!)

• It’s all online:
• http://research.uic.edu/compliance/irb/education-training
WHAT IS THE IRB?

• Committee composed of cross-section of community where research performed
• Protect rights and well-being of human subjects
• At least 5 members (per DHHS) and includes non-scientists, community members

• Want to know more?
• Contact the IRB and sit in on a review!
PROTOCOL CATEGORIES

• Exempt
 – Education, existing data (publically accessible), food tasting

• Expedited
 – No more than minimal risk

• Full
 – Full board review required
IRB COMMUNICATION

- Initial application
- Continuing review (each year)
- Protocol deviation
- Protocol amendment
- Adverse event
- Closure (final report)
HIPAA

• Health information that can be traced back to a particular individual (protected health information – PHI) is strictly forbidden for research unless the individual provides authorization

• HIPAA waiver may be appropriate in chart reviews
 – A study on hypertension could involve abstracting blood pressure data on 100 patients without recording other information that could identify them or link back to those patients
IRB TRICKS AND SECRETS

• Look at similar previous applications
• Keep consent forms simple with low-literacy level (use template)
• Talk to IRB personnel ahead of time about concerns
• Have mentor review application
• Create protocol following IRB’s template

• Don’t let yourself be frustrated!
• The IRB will always win!
BASIC PROTOCOL

• Title
• Investigators (with contact info)
• Introduction summary
• Background and justification
• Objectives and hypotheses
• Materials and methods
• Risks
• Power analysis and statistical plan
• Data management and safeguards for subjects
• References
EXAMPLE CASE 1

- 72 year old Alzheimer patient has given consent to be enrolled into a clinical study involving an investigational drug for memory.

- The patient is unable to give information about the purpose of the study or methods involved.
INFORMED CONSENT

• This case involves informed consent and probably requires a surrogate decision-maker to give consent.

• Surrogate’s decision must be based on the risk-benefit ratio and what is in the best interest of the patient.
EXAMPLE CASE 2

• During a clinical trial of stem cell transplantation, a significant number of patient withdrawals occur.
• This could harm a study statistically if more drop out.
• The PI wants to modify the informed consent document to make discontinuing or withdrawing from the study a mutual decision requiring the participant and researcher to agree.
AUTONOMY

• This violates principle of autonomy.
• Consent must be voluntary, and participant must be able to withdraw from study without impediments, reprisals, or compromising future care.
EXAMPLE CASE 3

• A smoking cessation study includes 10 clinics, 5 intervention and 5 control.
• The study was presented to people in a smoking cessation program with different interventions conducted at the intervention sites.
• They were not informed it was part of a study, to prevent them from altering their responses to surveys (thus altering the results).
FULL DISCLOSURE

Subjects have the right to full disclosure prior to agreeing to participate in a study.
EXAMPLE CASE 4

• After completing a study involving collection of tissue samples, a researcher wants to do additional testing not explicitly described in the initial consent form.
ADDITIONAL INFORMED CONSENT

• Most IRBs require an additional informed consent, or at minimum, a signed addendum to comply with the right for full disclosure.
DATA
COLLECTION

• Paper?
• Excel?
• REDCap?
• Variable definition names
• Keep a code book (dictionary)
STORAGE

• Keep documents in one safe place organized
• Secure documents (lock and key)
• Keep master list with identifiers separate
• Network drive storage (routine back ups)
• Special electronic storage if HIPAA identifiers
• Know the retention policy (when to destroy records)
ANALYSIS

• There are alternatives to Excel!
• Get help!

• Consider:
 – SAS
 – SPSS
 – STATA
 – R
VARIABLES

• Continuous (e.g., HbA1c)
• Discrete (e.g., number of live births)
• Categorical
 – Nominal – no order
 – Ordinal – has order melanoma)
HYPOTHESES

• What are we trying to prove here?

• Null hypothesis (H_0) negative/default
 – No difference in prevalence of breast cancer between Chinese and American women.

• Alternate hypothesis (H_A) research
 – There is a difference in the prevalence of breast cancer between Chinese and American women.
GRANT WRITING
WHY WRITE A GRANT?

• You need money/resources for:
 – Statistician, data manager, research assistant, materials, participant incentives, IT

• If it is low-cost, you probably don’t need it.

• But you probably should know something about it.
GRANT COMPONENTS

• Overview, objectives, aims
• Background, needs assessment, rationale
• Personnel and environment
• Design and methods
• Budget and justification
• Timeline
• Outcomes
• References
YOUR IDEA

- Compelling
- Original (check the literature – this is your background)
- Significant
- Address problem worth addressing (question worth answering)
- Clear
- Attainable by methods
- Feasible with time and resources
- Confirm with mentors and advice on funding source
“Agreed. We fund only those proposals we can understand.”
PRESENTATION
SHARING SCIENTIFIC DATA

• Abstract
• Poster presentation
 – Scholarly Activities Day!
• Oral presentation
• Written manuscript
ABSTRACTS

• Check the call for abstracts early!
 – Months before the meeting
• Regional meeting acceptance easier than national/larger
• Be efficient and descriptive
• Get examples!
POSTERS

• Keep it Simple S****** (KISS)
• Clear, succinct – understood in < 1-2 minutes
• Follow guidelines for size
 o Bullet points preferable
• Make sure text easy to read
• Get examples/templates!
EXAMPLE POSTER
MANUSCRIPTS

• Get examples!

• Guidelines on what to include:

 • RCT CONSORT
 • Observational studies STROBE
 • Systematic reviews PRISMA
 • Quality improvement SQUIRE
Scholarly Activities and Opportunities

<table>
<thead>
<tr>
<th>Minimum Training</th>
<th>Type</th>
<th>Title</th>
<th>Division</th>
<th>Site</th>
<th>Stipend</th>
<th>Post date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Research - Clinical</td>
<td>NICU Project Studying Patient/Provider Communication</td>
<td>Academic Internal Medicine & Geriatrics</td>
<td>UI Health</td>
<td>No</td>
<td>07.13.2016</td>
<td>07.23.2017</td>
</tr>
<tr>
<td>Student</td>
<td>Research - Clinical</td>
<td>Point of Care Ultrasound</td>
<td>Academic Internal Medicine & Geriatrics</td>
<td>UI Health</td>
<td>No</td>
<td>07.08.2016</td>
<td>07.18.2017</td>
</tr>
<tr>
<td>Student</td>
<td>Research - Clinical</td>
<td>Clinical Research in Endocrinology</td>
<td>Endocrinology, Diabetes & Metabolism</td>
<td>UIC</td>
<td>No</td>
<td>06.13.2016</td>
<td>06.30.2017</td>
</tr>
<tr>
<td>Student</td>
<td>Research - Basic Science</td>
<td>Racial Disparities Research in Colorectal Cancer</td>
<td>Gastroenterology and Hepatology</td>
<td>UIC</td>
<td>No</td>
<td>06.14.2016</td>
<td>06.30.2017</td>
</tr>
<tr>
<td>Student</td>
<td>Research - Clinical</td>
<td>An educational intervention to improve patients communication with their physicians.</td>
<td>Academic Internal Medicine & Geriatrics</td>
<td>Jesse Brown VA</td>
<td>Yes</td>
<td>06.03.2016</td>
<td>06.30.2017</td>
</tr>
<tr>
<td>Student</td>
<td>Research - Translational</td>
<td>Host-microbiome interactions with immune-mediated diseases</td>
<td>Pulmonary, Critical Care, Sleep & Allergy</td>
<td>COM, UIC</td>
<td>No</td>
<td>06.03.2016</td>
<td>06.30.2017</td>
</tr>
</tbody>
</table>

http://dom-drupal.med.uic.edu/drupal